
Acta Cryst. (2003). D59, 1131±1137 Potterton et al. � CCP4 graphical user interface 1131

research papers

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

A graphical user interface to the CCP4 program
suite

Elizabeth Potterton,a* Peter

Briggs,b Maria Turkenburga and

Eleanor Dodsona

aDepartment of Chemistry, University of York,

York YO10 5YW, England, and bDaresbury

Laboratory, Warrington WA4 4AD, England

Correspondence e-mail: lizp@ysbl.york.ac.uk

2003 International Union of Crystallography

Printed in Denmark ± all rights reserved

CCP4i is a graphical user interface that makes running

programs from the CCP4 suite simpler and quicker. It is

particularly directed at inexperienced users and tightly linked

to introductory and scienti®c documentation. It also provides

a simple project-management system and visualization tools.

The system is readily extensible and not speci®c to CCP4

software.

Received 23 October 2002

Accepted 9 April 2003

1. Introduction

The Collaborative Computational Project, Number 4 (CCP4)

is a collaboration in crystallographic software development

that is best known for distributing a suite of crystallographic

programs and software libraries (Collaborative Computa-

tional Project, Number 4, 1994). The software libraries support

some standard crystallographic ®le formats and provide tools

for command parsing, symmetry handling and other

commonly used functionality. The programs distributed by

CCP4 have been written in many different laboratories, but

mostly use the software libraries and follow certain conven-

tions to ensure a consistent style of keyworded input. CCP4

permanent staff ensure that distributed programs have

consistent documentation and a common build mechanism

which works for a wide range of platforms and provide user

support.

The CCP4 suite is a collection of stand-alone programs

rather than one large program. For some operations, several

programs are run in succession, with data transfer between

programs being mediated by ®les in the standard formats

supported by the software libraries. This approach allows

¯exibility for both programmers and users, but it can be

dif®cult for inexperienced users. Most programs have a range

of functionality that is controlled by keywords in a command

script which is usually embedded in a Unix shell script. A Unix

script might run several programs in succession and in itself

encode some of the functionality. The user must have some

programming skills to create these scripts or at least to edit

parameters and ®le names in existing scripts. This process is

slow and scripts are sometimes not up to date with the current

best use of programs.

Running CCP4 programs has been much simpli®ed by a

graphical user interface called CCP4i, which provides stan-

dard scripts to run all of the common tasks and a graphical

interface to each task that enables the user to enter para-

meters and names of input and output ®les. Each task

interface is designed to require minimal user input to work in a

default mode, but provides access to the full range of func-

tionality available in the programs. In addition to interfacing

to crystallographic tasks, CCP4i provides a project database

that records details of each task run and can display a wide

research papers

1132 Potterton et al. � CCP4 graphical user interface Acta Cryst. (2003). D59, 1131±1137

range of ®le formats. There is extensive documentation and

there are tutorials that teach the use of the programs and some

basic crystallography.

The interface is written in the Tcl scripting language using

the Tk graphical toolkit (Tcl Developers; http://www.tcl.tk).

The BLT extension to Tk is used to create graphs and tables.

These packages, and therefore CCP4i, will run on many

operating systems, but those particularly relevant to

crystallography are Unix, Linux, Windows and OSX.

2. Description of the graphical user interface

CCP4i consists of a core system and a series of `tasks'. The

core system manages the project database and has tools for ®le

visualization. A task is the interface to a script which may run

one or more programs. Each run of one task is referred to as a

`job'.

The graphical interface of CCP4i

consists of a main window, shown in Fig.

1. On the left-hand side of the main

window is a menu listing the tasks; when

a task is selected, a separate task inter-

face window is opened. In the centre of

the main window is the `Job List', which

lists all of the jobs which have been run

for the current project. The user can

select a job from the list to apply a

utility such as displaying input or output

®les from the job or rerunning the job.

Each task within the interface has a

separate interface window which presents the user with the

options for running the task, allows them to select input and

output ®les and to start a job. All task windows have a similar

layout to the interface shown in Fig. 2 for the DM density-

modi®cation program (Cowtan & Main, 1998). The task

interface is divided into horizontal folders. The top folder,

called the `protocol folder', has the most signi®cant options

that determine the action of the task. Next is the `®le folder', in

which the user can select input and output ®les and also select

the column data from an input re¯ection data ®le in MTZ

format. Each subsequent folder contains groups of related

options whose functionality is indicated by the name in the

title line of the folder. All folders except the protocol and the

®les folder may be closed so that the body of the folder is not

visible. The title line of a folder is always visible and clicking

on this line will open or close the folder. The folders are

arranged with the more signi®cant groups of options nearer

the top of the window; folders containing infrequently used

options are closed by default.

An important feature of the task interface is that as the user

selects options, the interface is adjusted to display only the

appropriate sub-options. In particular, the rest of the interface

may be customized depending on choices made in the protocol

folder.

The default parameters for a task will perform the most

popular function of the task and the user should only need to

select ®les and sometimes enter some non-defaultable data

such as the expected solvent content. There are two

mechanisms for providing additional information on each

parameter in the window: the message line at the top of a

window gives one line of information dependent on the

current cursor position and a mouse click on any parameter

brings up a web browser to access documentation for that

parameter. There is also introductory documentation for each

task. The documentation is distributed with the CCP4 release

and is also available on the CCP4 web site.

3. Implementation of tasks

The interface mechanism is not limited to CCP4 programs and

writing a new task interface is straightforward. The application

programmer's interface (API) functions and the process for

creating a new task interface are well documented. The

documentation and code for a simple demonstration task is

Figure 1
The layout of main window of the CCP4i graphical interface. The left-hand frame of the window is
the task menu, the centre frame is the Job List and the right-hand frame contains utilities.

Figure 2
An example of the layout of a task interface: the DM task interface. The
window is split vertically into frames. The top frame is the protocol frame
for key decisions and the next frame is for ®le selection. All subsequent
frames have a title bar with the name of the frame. Frames containing less
popular options are closed by default but can be opened by clicking on
the title line.

available at http://www.ccp4.ac.uk/ccp4i/developers.html.

Creating a task interface does not require any changes to the

program.

Each CCP4i task interface requires three ®les to de®ne the

task.

(i) A def ®le that contains a list of all of the parameters for

the task. For each parameter, the name, data type and default

value must be provided.

(ii) A GUI script that de®nes the appearance of the task

window.

(iii) A run script that executes the program(s) and that is

spawned as a separate process from the main CCP4i graphical

interface.

The GUI and run scripts are written in Tcl, but for straight-

forward cases they can be written almost entirely using the

CCP4i API, which is a library of simple high-level procedures.

For less generic tasks, all of the functionality of the Tcl

scripting language and if necessary the Tk graphical toolkit

can be used to create task-speci®c functionality.

3.1. Data types

The data type of each parameter speci®ed in the def ®le

determines the type of widget used to represent a parameter in

the interface. For example: a parameter of type _logical (i.e.

a Boolean with allowed values `true' and `false') will be

represented in the graphical interface by a radiobutton, which

can be on or off. A parameter with the type _positiveint (a

positive integer) will be represented by an entry ®eld into

which the user can type a number. The data type of any

parameter also determines the permissible values for that

parameter; if the user enters inappropriate data they will be

warned by the input widget changing colour. Examples of

inappropriate data would be a numerical value outside the

speci®ed allowed range or the name of a non-existent ®le for

an input ®le. Common data types are de®ned in a separate ®le,

but there are APIs to enable the task-interface programmer to

de®ne new data types. It is commonly necessary to create new

data types for parameters that are rendered as multiple-choice

pop-up menus. For each pop-up menu, there is a data type

whose key attribute is a list of the options that are to appear

on the menu.

3.2. The GUI script

The GUI script de®nes the appearance of the graphical

interface to a task. The script uses a library of high-level

graphical functions that are written using the Tk graphical

toolkit. The graphical interface is de®ned one line at a time by

a call to one of the library functions that each draw one line of

interface. The most generic of these functions is the

CreateLine function, which will draw a line containing any

combination of text labels, entry widgets, pop-up menus and

buttons. There are also speci®c library functions to create the

®le-selection and MTZ-column-selection lines (the latter are

discussed in more detail in x3.3). The input to these library

functions also contains a message-line help text and links to

additional help ®les. The use of the high-level graphics library

dramatically reduces the number of lines of code required to

de®ne the interface and helps to create task interfaces of

consistent appearance.

A key feature of the graphical interfaces is that they are

dynamically customized so that the user only sees the sub-

options relevant for the options that they have already chosen.

In order to support this, it is possible to control the visibility of

each line in the interface: if the content of a line is not relevant

for a selected option, then that line is made invisible. Condi-

tional visibility is implemented via an optional argument to

each line-drawing function that speci®es a parameter that

controls the visibility of the line and value(s) of this parameter

for which the line should be invisible. Several lines can be

grouped together into a `frame' for which the visibility is

controlled by one parameter. The lines and frames are

grouped into the folders, which are clearly delineated in the

task interface. The visibility of each folder can also be made

dependent on the value of a parameter. Typically, a parameter

that controls visibility of a line, frame or folder will have a

limited number of valid values that are presented to the user in

the form of a pop-up menu. When the user selects a new

option from the menu, the value of the parameter is updated

correspondingly and the visibility of any lines, frames or

folders controlled by this parameter is updated automatically.

3.3. File selection

The graphical interface to all ®le selections is provided by

the functions CreateInputFileLine and CreateOutput-

FileLine. Each of these functions creates one line in the

graphical interface. All ®le-selection lines have a consistent

appearance and contain (i) a pop-up menu that lists the

de®ned projects and directory aliases to enable rapid navi-

gation to commonly used directories, (ii) an entry ®eld for the

®le name, (iii) a `Browse' button that will bring up a more

sophisticated ®le-selection window and (iv) a `View' button

that will display the selected ®le. Sometimes, when the user

selects a ®le in some standard format it may be read to extract

information that is used to set default values for certain

parameters in the task interface.

Handling of MTZ ®les, which store the re¯ection data,

requires some additional interface tools. Files in this format

may contain an arbitrary number of columns of data. Asso-

ciated with each column is an indicator of the data type and a

unique label. Examples of the data types are intensities,

structure-factor amplitudes, standard deviations, phases,

®gures of merit and free R ¯ags. It is usually necessary to select

the appropriate data columns for input to any program. The

interface simpli®es this selection by presenting the user with a

menu listing the data-column labels for all data columns of the

appropriate type in a selected MTZ ®le.

3.4. Run scripts

The run scripts that actually run the programs are generally

written in Tcl, but since a script is run as a separate process it

could be implemented in an alternative scripting language.

Some scripts are very short and simple, running a single

Acta Cryst. (2003). D59, 1131±1137 Potterton et al. � CCP4 graphical user interface 1133

research papers

research papers

1134 Potterton et al. � CCP4 graphical user interface Acta Cryst. (2003). D59, 1131±1137

program, but others are quite complex, running several

programs and including signi®cant aspects of the task's func-

tionality in the script. The run script can make use of an API

library, which provides functionality to simplify creating

command scripts, handling program errors and commu-

nicating with the main CCP4i process.

Most CCP4 programs require keyword command input.

There are some conventions for the format of the command

input, but this is not a very tight speci®cation and it is not

followed by all CCP4 programs or by the non-CCP4 programs

that have also been interfaced. Generating the appropriate

command input for the options and parameters selected by the

user can be a complex task. This has been automated by a

library function, CreateComScript, that will create the

correctly formated keyword command input based upon a

template ®le for the appropriate program. The Create-

ComScript function substitutes the actual parameter values

for the parameter names that appear in the template ®le and

writes the result to a program command ®le. Because of the

complex nature of much of the programs' input, the template

®le also contains processor directives that correspond to the

common programming command structures: if-else-endif

statements, case statements and for loops. There is also a

processor directive for generating the commonly used LABIN

and LABOUT keywords that select the data columns in MTZ

®les.

The template-®le mechanism is suf®ciently ¯exible that

generally only one template ®le is needed for each program,

even if the program is used by different tasks. This mechanism

has been able to handle the input to a wide variety of

programs with very different command syntaxes, but the

complexity of the template ®le is proportional to the

complexity of the program input.

Another function used in the run script is Execute. It

executes a program but provides additional functionality to

create a master log ®le for the task, to handle program failure

cleanly and consistently and to allow a user to view and

optionally edit the command ®le before running the program.

The latter option can be useful for expert programmers who

may wish to modify the program input or test new tasks.

3.5. Example of code

Fig. 3 shows the line that appears in the DM task interface

and that enables the user to enter the fractional solvent

content of a unit cell. In order to implement this small part of

the interface, the following lines appeared in the various ®les.

The def ®le, dm.def, that de®nes the parameters, has

SOLVENT FRAC fraction } }:

The parameter SOLVENT_FRAC is de®ned as having the type

_fraction, which is de®ned elsewhere to mean a real number

in the range 0.0 to 1.0, and an initial value, which is an empty

string. In the GUI ®le dm.tcl, the line shown in Fig. 3 is

created by a call to the CreateLine function:

CreateLine line \

message }Fraction of unit cell which is

solvent �SOLC�} \

help solc \

label }Fraction solvent content} \

widget SOLVENT FRAC -oblig:

The ®rst argument to this function, line, is returned and will

contain an id code for the line drawn. The remaining argu-

ments to the function consist of pairs of keywords and values.

The keyword message is followed by the text that appears in

the message line if the cursor hovers over the widget. The

keyword help is followed by the name of a target in an html

®le; this will be used to link directly to the appropriate help

text for this parameter. The keyword label is followed by the

text seen in the window and the widget keyword is followed

by the parameter name. The type of the parameter, de®ned in

the dm.def ®le, determines the type of widget to be drawn. In

this case, it is an entry widget into which the user can type a

value. The ®nal argument, -oblig, indicates that the para-

meter is obligatory for the task to run. This fact is indicated to

the user by the gold contrast colour of the entry ®eld; this will

turn to white after the user has entered a value in the range 0.0

to 1.0.

Finally, in order to convert the value entered by the user

into a command recognized by the DM program, the

CreateComScript function will use a command template ®le

containing the line

1 solc $SOLVENT FRAC:

The initial parameter on each line of the template ®le is a

logical variable which indicates whether this line is to be

interpreted or ignored. The value of 1, or `true', in this

example means this line will always be interpreted. For some

lines, this parameter may be the name of a variable or a short

script which needs to be evaluated. The text solc is output to

the program command ®le as it is, but the parameter

$SOLVENT_FRAC is replaced by the value entered by the user.

3.6. Running jobs

Each run of a task is referred to as a job. Every job is run as

a separate non-graphical process controlled by a Tcl script

called ccp4ish. To run a job, CCP4i ®rst writes all the necessary

information to run the job to a def ®le and then starts a new

ccp4ish process. The ccp4ish process reads the def ®le and then

starts the appropriate run script for the task. ccp4ish includes a

library of API functions including the CreateComScript and

Execute functions described above. Another important

function is to communicate with the main graphical interface

using the Tcl interface to sockets. The main purpose of

communication is to send progress reports to the main
Figure 3
One line of the DM task interface.

graphical interface and to report the names of any additional

output ®les that the script creates.

Jobs can be run on the same machine as the graphical

interface or, for Unix systems supporting the rsh command,

on a machine in the local cluster. Jobs can be submitted to a

batch queue, but CCP4i may need some customization to ®t

with the batch system of the installation.

4. Examples of structure
determination functionality

The CCP4i tasks are grouped into

modules. There is one module for most

stages in the crystallographic process

and utility modules with tasks for

handling re¯ection data, coordinate

data and map and mask data. CCP4i

provides access to all the functionality

required for a reasonably straightfor-

ward structure solution and re®nement

starting from processed data, but

excluding the graphical model building.

A ¯ow-chart of the CCP4i modules is

shown in Fig. 4.

The amount of functionality in a run

script varies greatly. Some scripts just

run one program, other scripts run one

main program and include some

(usually optional) utilities to perform

things such as ®le-format conversion or

creation of a map in the user's

preferred format. Some of the run

scripts closely follow existing Unix

shell scripts such as the Uniqueify

script, which ensures that an MTZ ®le

had a complete set of unique re¯ec-

tions and contains a set of free R ¯ags,

or the Solomon script, which runs the

SOLOMON density-modi®cation

program (Abrahams & Leslie, 1996)

and other support programs. Other run

scripts signi®cantly extend the func-

tionality of the programs, for example

the AMoRe script and the NCS-Phased

Re®nement script.

The NCS-Phased Re®nement script

can be used in the early stages of

re®ning a model derived from mole-

cular replacement if there are two or

more molecules related by non-crys-

tallographic symmetry in the asym-

metric unit. Initial phases are derived

by the DM program from a mask that

covers the NCS-related molecules.

These initial phases are input to the

REFMAC re®nement program. The

process is repeated for several cycles

with a new mask and phases calculated

at each cycle. The power of the method comes from the

constraint on the phases from the NCS relationships (Pannu et

al., 1998; http://xplor.csb.yale.edu/xplor/xplor-faq/Q.247.html)

and has been used successfully in the early stages of re®ne-

ment of several structures (Roper et al., 2000; Moroz et al.,

2001). The CCP4i script automates the running of mask

generation, DM and REFMAC.

Acta Cryst. (2003). D59, 1131±1137 Potterton et al. � CCP4 graphical user interface 1135

research papers

Figure 4
Flow chart of CCP4i modules. The rectan-
gular boxes represent stages in the determi-
nation of macromolecular crystal structures.
The ellipsoids represent the input to and
output from the various stages. Stippling
indicates areas for which CCP4i de®nitely
does not provide complete functionality.

research papers

1136 Potterton et al. � CCP4 graphical user interface Acta Cryst. (2003). D59, 1131±1137

The AMoRe molecular-replacement program (Navaza,

1994) is usually run in a number of stages: data preparation,

rotation function, translation function and ®tting. The CCP4i

script automates the process and runs all stages sequentially

using `mr' ®les (described below) to tranfer data between

different runs of the program. Alternatively, individual stages

of the process can be run separately with the input coming

from mr ®les that the user can select and optionally edit. The

mr ®les are an example of the approach used to simplify and

automate transfer of data between different programs while

allowing user intervention. An mr ®le used in the molecular-

replacement module contains information about the rotations

and translations that need to be applied to a speci®ed initial

model to give the molecular-replacement solution. CCP4i

generates this ®le from the output ®le of AMoRe and can use it

as input to further runs of AMoRe or to generate a PDB ®le

representing the solution.

Similarly, CCP4i generates an `ha' (heavy-atom) ®le as

output from the heavy-atom search tasks in the experimental

phasing module [currently interfaces to PEAKMAX,

RANTAN (Yao, 1983), RSPS (Knight, 2000) and the non-

CCP4 package SHELX (Sheldrick, 1998)]. The ha ®le contains

information on putative heavy-atom solutions: the atom type,

coordinates, temperature factors, occupancies and anomalous

occupancies. The ha ®le can be used as input for the task

interface to the heavy-atom re®nement program MLPHARE

(Otwinowski, 1991).

CCP4i will display the ha and mr ®les and has simple tools

for the user to edit these ®les: particularly to `comment out'

some solutions so that they will be ignored if the ®le is used as

input to another task. The ha and mr ®les and the editing

facilities go some way to automating the structure solution

while still allowing user intervention. They may also be a

starting point for better communication between various

software packages. The EU-funded AutoStruct project (http://

www.autostruct.org) is considering using an improved ha ®le

for communication between several software packages and

the CCP4i can be modi®ed to use any new format.

5. Project management

CCP4i is based around the idea of projects, where one project

is expected to correspond to one crystal structure solution and

all ®les relating to that project are expected to be in one

directory referred to as the project directory. The user is not

required to follow this organization, but it is recommended.

There is always one current open project but the user can

move quickly between projects by selecting from a list of all

projects.

For every project, there is a project database that records

every job run. The information that is currently saved in the

project database for each job is the task name, the completion

date and time, the status (usually `running', `®nished' or

`failed') and the names of input and output ®les, including the

log ®le. In the graphical interface for each task the user has the

option to enter a title, which should be a short distinguishing

description of the job, and this is also saved in the project

database. A def ®le, which contains a full list of the input

parameters for the job, is also saved.

All of the jobs run within the project are listed in the main

window of the interface with the name of the task, time (if run

on the present day) or date, status and title. There is a menu of

utilities beside the Job List; any utility can be applied to any

job selected from the list. The utilities are viewing input or

output ®les of a job, killing a job that is still running, deleting

output ®les of a job and rerunning a job (with the option of

changing the input parameters).

This simple project-management system makes it easier for

a user to recall the crystallographic process, to review results

and if necessary to backtrack. There are two additional tools

to aid project management: information about jobs run

external to CCP4i can be entered and saved in the database

and there is a notebook utility for users to enter comments on

any of the jobs. Another bene®t from using projects is faster

®le selection: by default, input and output ®les are expected to

be located in the current project directory. CCP4i also has the

concept of directory aliases; the user can give a short alias for

any frequently used directory. Wherever the user needs to

select a ®le, there is a pop-up menu that lists all projects and

directory aliases so that the user can navigate quickly to the

required directory.

CCP4i creates some additional ®les to manage the project:

the database ®le called database.def and the def ®les

containing the input parameters for each job. These ®les are

saved to a subdirectory of the project directory called

CCP4_DATABASE. It is expected that the project database

will be developed in the future to record more information

automatically and to use this information appropriately in

subsequent tasks.

There are initiatives by the macromolecule database

submission sites to automate the harvesting of data that are

required for structure submission from the programs that have

ready access to that data. This process is independent of any

automation of the structure-solution process. CCP4i provides

a user interface to the harvesting mechanism.

6. File visualization

All data ®les used throughout the structure solution and

re®nement can be displayed by the interface; for some ®le

formats, CCP4i will start another appropriate display

program. There are several means of accessing the ®le display:

the ®le-selection lines and ®le-selection window have `View'

buttons and there is a utility associated with the Job List to

view any input or output ®le for a selected job. It is straight-

forward to de®ne appropriate viewers for additional ®le

formats or add alternative viewers for formats that are already

supported.

CCP4 program log ®les are in the process of conversion

from simple text format to html format. Use of html format

enables cross-linking within the log ®le and linking to external

documentation. The interface will recognize the format of the

log ®le and display it in an external web browser or in an

internal text-display window.

Log ®les may also contain tabulated data, which is best

visualized as graphs. The loggraph application can display the

graphs de®ned in the log ®les. There is a standard format for a

log ®le table that includes annotation to label the graphs

within loggraph; each column of the data has a title which is

used to label the graph. loggraph will also read any ®le

containing simple unannotated tabulated data. The loggraph

application has options to modify the appearance of the graph

by changing colours or linestyles, editing title, axes titles or

labels or adding annotation. The graph can be saved in Post-

Script format.

Two of the standard ®le formats, MTZ re¯ection data ®le

and CCP4 map ®les, are binary ®les that cannot be visualized

by any of the standard means. CCP4i will display the infor-

mation stored in the header of these ®les. A graphical inter-

face to the SFTOOLS program (Bart Hazes, unpublished

work), provides additional means to inspect and manipulate

the MTZ ®le.

Map ®les can also be viewed using the Mapslicer applica-

tion, which displays two-dimensional sections of maps. The

maps can be sectioned down any axis and Mapslicer can select

Harker sections automatically. The application uses the Tk

canvas widget, which is a simple and effective means of

generating two-dimensional graphics. The map contouring is

performed by an existing contouring algorithm written in

Fortran and linked into a Tcl interpreter to appear as an

additional command in the Tcl scripting language. By this

means, more computationally intensive algorithms such as

map contouring can be written in a more appropriate language

but tightly linked with the scripting language part of the

application.

The Tk canvas widget has also been used to display the

three-dimensional molecular structure of small molecules in

the Monomer Library Sketcher application. This is an interface

to the LibCheck program that manages the library of

geometric restraints for monomers used in restrained re®ne-

ment (Vagin et al., 2003). The Sketcher can be regarded as a

visualiser for the geometric restraint library entries and it

provides tools to create a new entry or edit an existing one.

7. Discussion

CCP4i has been a signi®cant step forward in the usability of

CCP4 software: it has made access to CCP4 programs

considerably easier for inexperienced users and signi®cantly

quicker even for experienced users. The resultant software

system is not a black box: the experienced user can see exactly

what is happening and control the ®ne details of program

input. All output ®les and intermediate data are accessible.

Because all ®les are accessible, a user can alternate between

using CCP4i and running programs by some other means. A

potential pitfall of this approach is that a user could, for

example, move ®les and invalidate the information in the

database. In practice, however, crystallographers tend to

understand the system well enough not to do this. A reser-

vation sometimes raised about this system is that it encourages

inexperienced crystallographers to treat the process as a `black

box' and pay insuf®cient attention to details of program input

and to program output. However, this possibility has always

been there and the CCP4i project database does at least

enable users to review earlier steps and backtrack when

problems arise.

CCP4i is readily extensible, implementation of individual

tasks is straightforward and there is no technical reason that

prevents interfacing to non-CCP4 software.

CCP4i will serve as a platform for future developments to

improve the scienti®c software and to increase automation.

The use of standard scripts, which the user does not need to

interact with directly, makes it possible to develop both the

programs and the scripts in a way that is transparent to the

user. The project database maintains a record of the structure-

solution and re®nement process. The database can be devel-

oped in the future to record more of the results of each job and

this information could be used in decision making in a more

automated process. CCP4i will interface to the tools that

automate harvesting the experimental information required

for submission of structures to the structural data banks.

Our thanks to Darren Spruce for allowing us to use his

original version of the loggraph program, Leo Caves for code

used in the Monomer Library Sketcher and Alun Ashton for

porting to Windows. Many thanks to many programmers and

users for advice and feedback, particularly Phil Evans, Garib

Murshudov, Heidi Schubert and Johan Turkenburg.

References

Abrahams, J. P. & Leslie, A. G. W. (1996). Acta Cryst. D52, 30±42.
Collaborative Computational Project, Number 4 (1994). Acta Cryst.

D50, 760±763.
Cowtan, K. D. & Main, P. (1998). Acta Cryst. D54, 487±493.
Knight, S. D. (2000). Acta Cryst. D56, 42±47.
Moroz, O. V., Antson, A. A., Murshudov, G. N, Maitland, N. J.,

Dodson, G. G., Wilson, K. S., Skibshoj, I., Lukanidin, E. M. &
Bronstein, I. B. (2001). Acta Cryst. D57, 20±29.

Navaza, J. (1994). Acta Cryst. A50, 157±163.
Otwinowski, Z. (1991). Proceedings of the CCP4 Study Weekend.

Isomorphous Scattering and Anomalous Replacement, edited by
W. Wolf, P. R. Evans & A. G. W. Leslie, pp. 80±86. Warrington:
Daresbury Laboratory.

Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. (1998).
Acta Cryst. D54, 1285±1294.

Roper, D. I., Huyton, T., Vagin, A. & Dodson, G. G. (2000). Proc. Natl
Acad. Sci. USA, 97, 8921±8925.

Sheldrick, G. M. (1998). Proceedings of the NATO Advanced Study
Institute on Direct Methods for Solving Macromolecular Structures.
Dordrecht: Kluwer Academic Publishers.

Vagin, A., Potterton, E. A., Henrick, K. & Murshudov, G. (2003). In
preparation.

Yao, J.-X. (1983). Acta Cryst. A39, 35±37.

Acta Cryst. (2003). D59, 1131±1137 Potterton et al. � CCP4 graphical user interface 1137

research papers

